Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Br J Haematol ; 2023 Jun 07.
Article in English | MEDLINE | ID: covidwho-20240295

ABSTRACT

Patients with sickle cell disease (SCD) are considered to be immunocompromised, yet data on the antibody response to SARS-CoV-2 vaccination in SCD is limited. We investigated anti-SARS-CoV-2 IgG titres and overall neutralizing activity in 201 adults with SCD and demographically matched non-SCD controls. Unexpectedly, patients with SCD generate a more robust and durable COVID-19 vaccine IgG response compared to matched controls, though the neutralizing activity remained similar across both cohorts. These findings suggest that patients with SCD achieve a similar antibody response following COVID-19 vaccination compared to the general population, with implications for optimal vaccination strategies for patients with SCD.

2.
J Infect Dis ; 2022 Jun 29.
Article in English | MEDLINE | ID: covidwho-2304792

ABSTRACT

We examined the relationship between placental histopathology and transplacental antibody transfer in pregnant patients following SARS-CoV-2 infection. Differences in plasma concentrations of anti-Receptor Biding Domain (RBD) Immunoglobulin (Ig) G antibodies in maternal and cord blood were analyzed according to presence of placental injury. Median [IQR] anti-RBD IgG concentrations in cord blood with placental injury (n = 7) did not differ significantly from those without injury (n= 16) [(2.7 [1.8,3.6] vs 2.7[2.4, 2.9], p= 0.59). However, they were associated with lower transfer ratios (median [IQR] 0.77[0.61, 0.97] vs. 0.97[0.80, 1.01], p = 0.05) suggesting that SARS-CoV-2 placental injury mediates reduced maternal-fetal antibody transfer.

3.
Nat Commun ; 14(1): 1638, 2023 04 04.
Article in English | MEDLINE | ID: covidwho-2257641

ABSTRACT

The pathogenesis of multi-organ dysfunction associated with severe acute SARS-CoV-2 infection remains poorly understood. Endothelial damage and microvascular thrombosis have been identified as drivers of COVID-19 severity, yet the mechanisms underlying these processes remain elusive. Here we show alterations in fluid shear stress-responsive pathways in critically ill COVID-19 adults as compared to non-COVID critically ill adults using a multiomics approach. Mechanistic in-vitro studies, using microvasculature-on-chip devices, reveal that plasma from critically ill COVID-19 adults induces fibrinogen-dependent red blood cell aggregation that mechanically damages the microvascular glycocalyx. This mechanism appears unique to COVID-19, as plasma from non-COVID sepsis patients demonstrates greater red blood cell membrane stiffness but induces less significant alterations in overall blood rheology. Multiomics analyses in pediatric patients with acute COVID-19 or the post-infectious multi-inflammatory syndrome in children (MIS-C) demonstrate little overlap in plasma cytokine and metabolite changes compared to adult COVID-19 patients. Instead, pediatric acute COVID-19 and MIS-C patients show alterations strongly associated with cytokine upregulation. These findings link high fibrinogen and red blood cell aggregation with endotheliopathy in adult COVID-19 patients and highlight differences in the key mediators of pathogenesis between adult and pediatric populations.


Subject(s)
COVID-19 , Humans , Child , Adult , SARS-CoV-2 , Critical Illness , Cytokines , Fibrinogen
5.
Int J Gynaecol Obstet ; 162(1): 154-162, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2173002

ABSTRACT

OBJECTIVE: To improve our understanding of the immune response, including the neutralization antibody response, following COVID-19 vaccination in pregnancy. METHODS: This was a prospective cohort study comprising patients with PCR-confirmed SARS-CoV-2 infection and patients who received both doses of mRNA COVID-19 vaccine (mRNA-1273, BNT162b2) in pregnancy recruited from two hospitals in Atlanta, GA, USA. Maternal blood and cord blood at delivery were assayed for anti-receptor binding domain (RBD) IgG, IgA and IgM, and neutralizing antibody. The detection of antibodies, titers, and maternal to fetal transfer ratios were compared. RESULTS: Nearly all patients had detectable RBD-binding IgG in maternal and cord samples. The vaccinated versus infected cohort had a significantly greater proportion of cord samples with detectable neutralizing antibody (94% vs. 28%, P < 0.001) and significantly higher transfer ratios for RBD-specific IgG and neutralizing antibodies with a transfer efficiency of 105% (vs. 80%, P < 0.001) and 110% (vs. 90%, P < 0.001), respectively. There was a significant linear decline in maternal and cord blood RBD-specific IgG and neutralizing antibody titers as time from vaccination to delivery increased. CONCLUSIONS: Those who receive the mRNA COVID-19 vaccine mount an immune response that is equivalent to-if not greater than-those naturally infected by SARS-CoV-2 during pregnancy.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , COVID-19 , Female , Pregnancy , Humans , BNT162 Vaccine , COVID-19 Vaccines , Antibody Formation , Prospective Studies , COVID-19/prevention & control , SARS-CoV-2 , Antibodies, Neutralizing , RNA, Messenger , Immunoglobulin G , Antibodies, Viral , Vaccination
6.
Pediatr Infect Dis J ; 42(2): 130-135, 2023 02 01.
Article in English | MEDLINE | ID: covidwho-2190927

ABSTRACT

BACKGROUND: Nucleocapsid antigenemia in adults has demonstrated high sensitivity and specificity for acute infection, and antigen burden is associated with disease severity. Data regarding SARS-CoV-2 antigenemia in children are limited. METHODS: We retrospectively analyzed blood plasma specimens from hospitalized children with COVID-19 or MIS-C. Nucleocapsid and spike were measured using ultrasensitive immunoassays. RESULTS: We detected nucleocapsid antigenemia in 62% (50/81) and spike antigenemia in 27% (21/79) of children with acute COVID-19 but 0% (0/26) and 15% (4/26) with MIS-C from March 2020-March 2021. Higher nucleocapsid levels were associated with radiographic infiltrates and respiratory symptoms in children with COVID-19. CONCLUSIONS: Antigenemia lacks the sensitivity to diagnose acute infection in children but is associated with signs and symptoms of lower respiratory tract involvement. Further study into the mechanism of antigenemia, its association with specific organ involvement, and the role of antigenemia in the pathogenesis of COVID-19 is warranted.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Humans , Child , Retrospective Studies , Antibodies, Viral
8.
Ann Diagn Pathol ; 60: 152019, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1966324

ABSTRACT

BACKGROUND: From 2008 to 2017, 28.8 % fewer United States allopathic medical students (MD seniors) applied to pathology residency in the Main Residency Match (MRM) and 27.5 % fewer matched. This study is a 5-year follow-up. METHODS: MRM data from 2018 to 2022 were reviewed to determine the numbers of MD seniors that applied and matched to pathology residency and other major medical specialties. RESULTS: From 2018 to 2022, the number of MD seniors applying to pathology increased 4.6 % from 237 to 248, while MD seniors matching to pathology increased 5.0 % from 220 to 231. For the 4 years from 2018 to 2021, there was a slight decline in MD seniors filling pathology positions, followed by a substantial 16.7 % spike in 2022. For the entire 5-year interval, because the number of filled pathology residency positions increased by 9.0 %, the percentage of filled positions taken by MD seniors declined from 38.7 % to 37.3 %. Of the 15 major medical specialties evaluated, pathology now has the 14th lowest percentage of filled positions taken by MD seniors. CONCLUSIONS: The number of MD seniors applying and matching to pathology residency increased over the past 5-years, in contrast to the timespan of 2008 to 2017. However, the percentage of pathology residency positions taken by MD seniors continued to decline and remains low compared to other major medical specialties. MRM data should be continually monitored to study trends in MD seniors filling pathology residency positions in the context of new recruitment efforts and the pandemic.


Subject(s)
Internship and Residency , Students, Medical , Career Choice , Humans , Schools, Medical , United States
9.
Biomedicines ; 10(7)2022 Jul 18.
Article in English | MEDLINE | ID: covidwho-1963712

ABSTRACT

The development of anti-drug antibodies represents a significant barrier to the utilization of protein-based therapies for a wide variety of diseases. While the rate of antibody formation can vary depending on the therapeutic employed and the target patient population receiving the drug, the antigen-specific immune response underlying the development of anti-drug antibodies often remains difficult to define. This is especially true for patients with hemophilia A who, following exposure, develop antibodies against the coagulation factor, factor VIII (FVIII). Models capable of studying this response in an antigen-specific manner have been lacking. To overcome this challenge, we engineered FVIII to contain a peptide (323-339) from the model antigen ovalbumin (OVA), a very common tool used to study antigen-specific immunity. FVIII with an OVA peptide (FVIII-OVA) retained clotting activity and possessed the ability to activate CD4 T cells specific to OVA323-339 in vitro. When compared to FVIII alone, FVIII-OVA also exhibited a similar level of immunogenicity, suggesting that the presence of OVA323-339 does not substantially alter the anti-FVIII immune response. Intriguingly, while little CD4 T cell response could be observed following exposure to FVIII-OVA alone, inclusion of anti-FVIII antibodies, recently shown to favorably modulate anti-FVIII immune responses, significantly enhanced CD4 T cell activation following FVIII-OVA exposure. These results demonstrate that model antigens can be incorporated into a therapeutic protein to study antigen-specific responses and more specifically that the CD4 T cell response to FVIII-OVA can be augmented by pre-existing anti-FVIII antibodies.

10.
J Infect Dis ; 226(9): 1577-1587, 2022 11 01.
Article in English | MEDLINE | ID: covidwho-1961056

ABSTRACT

Detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is essential for diagnosis, treatment, and infection control. Polymerase chain reaction (PCR) fails to distinguish acute from resolved infections, as RNA is frequently detected after infectiousness. We hypothesized that nucleocapsid in blood marks acute infection with the potential to enhance isolation and treatment strategies. In a retrospective serosurvey of inpatient and outpatient encounters, we categorized samples along an infection timeline using timing of SARS-CoV-2 testing and symptomatology. Among 1860 specimens from 1607 patients, the highest levels and frequency of antigenemia were observed in samples from acute SARS-CoV-2 infection. Antigenemia was higher in seronegative individuals and in those with severe disease. In our analysis, antigenemia exhibited 85.8% sensitivity and 98.6% specificity as a biomarker for acute coronavirus disease 2019 (COVID-19). Thus, antigenemia sensitively and specifically marks acute SARS-CoV-2 infection. Further study is warranted to determine whether antigenemia may aid individualized assessment of active COVID-19.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , COVID-19 Testing , Retrospective Studies , Sensitivity and Specificity , Nucleocapsid , Biomarkers
11.
Blood ; 139(21): 3222-3225, 2022 05 26.
Article in English | MEDLINE | ID: covidwho-1896318
13.
Obstet Gynecol ; 138(2): 189-197, 2021 08 01.
Article in English | MEDLINE | ID: covidwho-1364849

ABSTRACT

OBJECTIVE: To characterize maternal immune response after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during pregnancy and quantify the efficiency of transplacental antibody transfer. METHODS: We conducted a prospective cohort study of pregnant patients who tested positive for SARS CoV-2 infection at any point in pregnancy and collected paired maternal and cord blood samples at the time of delivery. An enzyme-linked immunosorbent assay (ELISA) and neutralization assays were performed to measure maternal plasma and cord blood concentrations and neutralizing potency of immunoglobulin (Ig)G, IgA, and IgM antibodies directed against the SARS-CoV-2 spike protein. Differences in concentrations according to symptomatic compared with asymptomatic infection and time from positive polymerase chain reaction (PCR) test result to delivery were analyzed using nonparametric tests of significance. The ratio of cord to maternal anti-receptor-binding domain IgG titers was analyzed to assess transplacental transfer efficiency. RESULTS: Thirty-two paired samples were analyzed. Detectable anti-receptor-binding domain IgG was detected in 100% (n=32) of maternal and 91% (n=29) of cord blood samples. Functional neutralizing antibody was present in 94% (n=30) of the maternal and 25% (n=8) of cord blood samples. Symptomatic infection was associated with a significant difference in median (interquartile range) maternal anti-receptor-binding domain IgG titers compared with asymptomatic infection (log 3.2 [3.5-2.4] vs log 2.7 [2.9-1.4], P=.03). Median (interquartile range) maternal anti-receptor-binding domain IgG titers were not significantly higher in patients who delivered more than 14 days after a positive PCR test result compared with those who delivered within 14 days (log 3.3 [3.5-2.4] vs log 2.67 [2.8-1.6], P=.05). Median (range) cord/maternal antibody ratio was 0.81 (0.67-0.88). CONCLUSIONS: These results demonstrate robust maternal neutralizing and anti-receptor-binding domain IgG response after SARS-CoV-2 infection, yet a lower-than-expected efficiency of transplacental antibody transfer and a significant reduction in neutralization between maternal blood and cord blood. Maternal infection does confer some degree of neonatal antibody protection, but the robustness and durability of protection require further study.


Subject(s)
Antibody Formation , COVID-19/immunology , Maternal-Fetal Exchange , Pregnancy Complications, Infectious/immunology , SARS-CoV-2/immunology , Adult , Antibodies, Neutralizing , Asymptomatic Infections , Female , Humans , Pregnancy , Prospective Studies , Young Adult
14.
Transfusion ; 61(6): 1740-1748, 2021 06.
Article in English | MEDLINE | ID: covidwho-1243668

ABSTRACT

BACKGROUND: While convalescent plasma (CP) may benefit patients with COVID-19, fundamental questions remain regarding its efficacy, including the components of CP that may contribute to its therapeutic effect. Most current serological evaluation of CP relies on examination of total immunoglobulin or IgG-specific anti-SARS-CoV-2 antibody levels. However, IgA antibodies, which also circulate and are secreted along the respiratory mucosa, represent a relatively uncharacterized component of CP. STUDY DESIGN AND METHODS: Residual samples from patients and CP donors were assessed for IgM, IgG, and IgA anti-SARS-CoV-2 antibody titers against the receptor-binding domain responsible for viral entry. Symptom onset was obtained by chart review. RESULTS: Increased IgA anti-SARS-CoV-2 antibody levels correlated with clinical improvement and viral clearance in an infant with COVID-19, prompting a broader examination of IgA levels among CP donors and hospitalized patients. Significant heterogeneity in IgA levels was observed among CP donors, which correlated weakly with IgG levels or the results of a commonly employed serological test. Unlike IgG and IgM, IgA levels were also more likely to be variable in hospitalized patients and this variability persisted in some patients >14 days following symptom onset. IgA levels were also less likely to be sustained than IgG levels following subsequent CP donation. CONCLUSIONS: IgA levels can be very heterogenous among CP donors and hospitalized patients and do not necessarily correlate with commonly employed testing platforms. Examining isotype levels in CP and COVID-19 patients may allow for a tailored approach when seeking to fill specific gaps in humoral immunity.


Subject(s)
COVID-19/immunology , COVID-19/therapy , Convalescence , Immunoglobulin A/blood , SARS-CoV-2/immunology , Antibodies, Viral/blood , Blood Donors , Down Syndrome/complications , Down Syndrome/immunology , Down Syndrome/therapy , Female , Heart Septal Defects/complications , Heart Septal Defects/immunology , Heart Septal Defects/therapy , Humans , Immunity, Humoral/immunology , Immunization, Passive/methods , Immunoglobulin A/analysis , Immunoglobulin G/blood , Immunoglobulin M/blood , Infant , Retrospective Studies , Serologic Tests , United States , COVID-19 Serotherapy
17.
J Clin Microbiol ; 59(4)2021 03 19.
Article in English | MEDLINE | ID: covidwho-1166354

ABSTRACT

Accurate diagnosis of acute severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is critical for appropriate management of patients with this disease. We examined the possible complementary role of laboratory-developed class-specific clinical serology in assessing SARS-CoV-2 infection in hospitalized patients. Serological tests for immunoglobulin G (IgG), IgA, and IgM antibodies against the receptor binding domain (RBD) of SARS-CoV-2 were evaluated using samples from real-time reverse transcription-quantitative PCR (qRT-PCR)-confirmed inpatient coronavirus disease 2019 (COVID-19) cases. We analyzed the influence of timing and clinical severity on the diagnostic value of class-specific COVID-19 serology testing. Cross-sectional analysis revealed higher sensitivity and specificity at lower optical density cutoffs for IgA in hospitalized patients than for IgG and IgM serology (IgG area under the curve [AUC] of 0.91 [95% confidence interval {CI}, 0.89 to 0.93] versus IgA AUC of 0.97 [95% CI, 0.96 to 0.98] versus IgM AUC of 0.95 [95% CI, 0.92 to 0.97]). The enhanced performance of IgA serology was apparent in the first 2 weeks after symptom onset and the first week after PCR testing. In patients requiring intubation, all three tests exhibit enhanced sensitivity. Among PCR-negative patients under investigation for SARS-CoV-2 infection, 2 out of 61 showed clear evidence of seroconversion IgG, IgA, and IgM. Suspected false-positive results in the latter population were most frequently observed in IgG and IgM serology tests. Our findings suggest the potential utility of IgA serology in the acute setting and explore the benefits and limitations of class-specific serology as a complementary diagnostic tool to PCR for COVID-19 in the acute setting.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Cross-Sectional Studies , Humans , Immunoglobulin M , Sensitivity and Specificity
18.
Front Pediatr ; 8: 616731, 2020.
Article in English | MEDLINE | ID: covidwho-1033060

ABSTRACT

Most children with COVID-19 have asymptomatic or mild illness. Those who become critically ill suffer from acute respiratory distress syndrome (ARDS) and acute kidney injury (AKI). The rapid deterioration of lung function has been linked to microangiopathic and immune-mediated processes seen in the lungs of adult patients with COVID-19. The role of complement-mediated acute lung injury is supported by animal models of SARS-CoV, evaluation of lung tissue in those who died from COVID-19 and response of COVID-19 ARDS to complement inhibition. We present a summary of a child with COVID-19 disease treated with convalescent plasma and eculizumab and provide a detailed evaluation of the inflammatory pathways.

19.
Transfusion ; 61(4): 1029-1034, 2021 04.
Article in English | MEDLINE | ID: covidwho-969728

ABSTRACT

BACKGROUND: Recent data suggests an association between blood hyperviscosity and both propensity for thrombosis and disease severity in patients with COVID-19. This raises the possibility that increased viscosity may contribute to endothelial damage and multiorgan failure in COVID-19, and that therapeutic plasma exchange (TPE) to decrease viscosity may improve patient outcomes. Here we sought to share our experience using TPE in the first 6 patients treated for COVID-19-associated hyperviscosity. STUDY DESIGN AND METHODS: Six critically ill COVID-19 patients with plasma viscosity levels ranging from 2.6 to 4.2 centipoise (cP; normal range, 1.4-1.8 cP) underwent daily TPE for 2-3 treatments. RESULTS: TPE decreased plasma viscosity in all six patients (Pre-TPE median 3.75 cP, range 2.6-4.2 cP; Post-TPE median 1.6 cP, range 1.5-1.9 cP). TPE also decreased fibrinogen levels in all five patients for whom results were available (Pre-TPE median 739 mg/dL, range 601-1188 mg/dL; Post-TPE median 359 mg/dL, range 235-461 mg/dL); D-dimer levels in all six patients (Pre-TPE median 5921 ng/mL, range 1134-60 000 ng/mL; Post-TPE median 4893 ng/mL, range 620-7518 ng/mL); and CRP levels in five of six patients (Pre-TPE median 292 mg/L, range 136-329 mg/L; Post-TPE median 84 mg/L, range 31-211 mg/L). While the two sickest patients died, significant improvement in clinical status was observed in four of six patients shortly after TPE. CONCLUSIONS: This series demonstrates the utility of TPE to rapidly correct increased blood viscosity in patients with COVID-19-associated hyperviscosity. Large randomized trials are needed to determine whether TPE may improve clinical outcomes for patients with COVID-19.


Subject(s)
Blood Viscosity , COVID-19 , Plasma Exchange , SARS-CoV-2/metabolism , Adult , Aged , COVID-19/blood , COVID-19/therapy , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL